Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Viruses ; 15(4)2023 04 14.
Article in English | MEDLINE | ID: covidwho-2297839

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a novel infectious respiratory disease caused by SARS-CoV-2. We evaluated the efficacy of a plant-based human recombinant angiotensin-converting enzyme 2 (hrACE2) and hrACE2-foldon (hrACE2-Fd) protein against COVID-19. In addition, we analyzed the antiviral activity of hrACE2 and hrACE2-Fd against SARS-CoV-2 using real-time reverse-transcription PCR and plaque assays. The therapeutic efficacy was detected using the Golden Syrian hamster model infected with SARS-CoV-2. Both hrACE2 and hrACE2-Fd inhibited SARS-CoV-2 by 50% at concentrations below the maximum plasma concentration, with EC50 of 5.8 µg/mL and 6.2 µg/mL, respectively. The hrACE2 and hrACE2-Fd injection groups showed a tendency for decreased viral titers in nasal turbinate tissues on day 3 after virus inoculation; however, this decrease was not detectable in lung tissues. Histopathological examination on day 9 after virus inoculation showed continued inflammation in the SARS-CoV-2 infection group, whereas decreased inflammation was observed in both the hrACE2 and hrACE2-Fd injection groups. No significant changes were observed at other time points. In conclusion, the potential therapeutic efficacy of plant-based proteins, hrACE2 and hrACE2-Fd, against COVID-19 was confirmed in a SARS-CoV-2-inoculated Golden Syrian hamster model. Further preclinical studies on primates and humans are necessary to obtain additional evidence and determine the effectiveness of these therapies.


Subject(s)
COVID-19 , Cricetinae , Animals , Humans , Mesocricetus , Angiotensin-Converting Enzyme 2 , SARS-CoV-2 , Inflammation
2.
Frontiers in medicine ; 10, 2023.
Article in English | EuropePMC | ID: covidwho-2287949

ABSTRACT

Background Bacterial superinfection is not uncommon in critically ill patients with coronavirus disease (COVID-19) pneumonia requiring intensive care unit (ICU) treatment. However, there is still a lack of evidence related to bacterial superinfection and their clinical significance in critically ill patients with COVID-19. Therefore, we assessed the incidence of bacterial superinfections and their effects on clinical outcomes in critically ill patients with COVID-19. Materials and methods This single-center retrospective cohort study analyzed critically ill patients with COVID-19 admitted to the ICU at a tertiary academic hospital between February 2020 and December 2021. We reviewed data including patient demographics, clinical and microbiological characteristics, and outcomes. Results During the study period, 106 patients (median [IQR] age, 67 [58–75] years) were included, of which 32 (30%) were diagnosed with bacterial superinfections. Of these, 12 cases (38%) were associated with multidrug-resistant pathogens. Klebsiella aerogenes (6 cases [19%]) and Klebsiella pneumoniae (6 cases [19%]) were the most common pathogens associated with superinfections. The median time to bacterial superinfection was 13 (IQR, 9–20) days after ICU admission. Patients with bacterial superinfections had significantly fewer ventilator-free days on day 28 (0 [IQR, 0–0] days) than those without bacterial superinfections (19 [IQR, 0–22] days) (p < 0.001). Patients with bacterial superinfections had a longer ICU length of stay (32 [IQR, 9–53] days) than those without bacterial superinfections (11 [IQR, 7–18] days) (p < 0.001). Additionally, they had a longer hospital length of stay after ICU admission (39 [IQR, 18–62] days) than those without bacterial superinfections (18 [IQR, 12–37] days) (p = 0.001). There were no differences in ICU mortality or in-hospital mortality between the two groups. In the multivariable analysis, higher SAPS II score (OR, 2.697;95% CI, 1.086–6.695) and thrombocytopenia (OR, 3.318;95% CI, 1.355–8.123) were identified as risk factors for development of bacterial superinfection. Conclusion In critically ill patients with COVID-19, bacterial superinfections were common, and more than one-third of the bacterial superinfection cases were caused by multidrug-resistant pathogens. As patients with bacterial superinfections had worse clinical outcomes, the development of bacterial superinfections should be actively monitored.

3.
Biosens Bioelectron ; 219: 114783, 2022 Oct 05.
Article in English | MEDLINE | ID: covidwho-2244013

ABSTRACT

The outbreak of pandemics (e.g., severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 in 2019), influenza A viruses (H1N1 in 2009), etc.), and worldwide spike in the aging population have created unprecedented urgency for developing new drugs to improve disease treatment. As a result, extensive efforts have been made to design novel techniques for efficient drug monitoring and screening, which form the backbone of drug development. Compared to traditional techniques, microfluidics-based platforms have emerged as promising alternatives for high-throughput drug screening due to their inherent miniaturization characteristics, low sample consumption, integration, and compatibility with diverse analytical strategies. Moreover, the microfluidic-based models utilizing human cells to produce in-vitro biomimetics of the human body pave new ways to predict more accurate drug effects in humans. This review provides a comprehensive summary of different microfluidics-based drug sensing and screening strategies and briefly discusses their advantages. Most importantly, an in-depth outlook of the commonly used detection techniques integrated with microfluidic chips for highly sensitive drug screening is provided. Then, the influence of critical parameters such as sensing materials and microfluidic platform geometries on screening performance is summarized. This review also outlines the recent applications of microfluidic approaches for screening therapeutic and illicit drugs. Moreover, the current challenges and the future perspective of this research field is elaborately highlighted, which we believe will contribute immensely towards significant achievements in all aspects of drug development.

4.
Biosensors & bioelectronics ; 2022.
Article in English | EuropePMC | ID: covidwho-2046381

ABSTRACT

The outbreak of pandemics (e.g., severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 in 2019), influenza A viruses (H1N1 in 2009), etc.), and worldwide spike in the aging population have created unprecedented urgency for developing new drugs to improve disease treatment. As a result, extensive efforts have been made to design novel techniques for efficient drug monitoring and screening, which form the backbone of drug development. Compared to traditional techniques, microfluidics-based platforms have emerged as promising alternatives for high-throughput drug screening due to their inherent miniaturization characteristics, low sample consumption, integration, and compatibility with diverse analytical strategies. Moreover, the microfluidic-based models utilizing human cells to produce in-vitro biomimetics of the human body pave new ways to predict more accurate drug effects in humans. This review provides a comprehensive summary of different microfluidics-based drug sensing and screening strategies and briefly discusses their advantages. Most importantly, an in-depth outlook of the commonly used detection techniques integrated with microfluidic chips for highly sensitive drug screening is provided. Then, the influence of critical parameters such as sensing materials and microfluidic platform geometries on screening performance is summarized. This review also outlines the recent applications of microfluidic approaches for screening therapeutic and illicit drugs. Moreover, the current challenges and the future perspective of this research field is elaborately highlighted, which we believe will contribute immensely towards significant achievements in all aspects of drug development.

5.
Acute Crit Care ; 37(3): 322-331, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1990302

ABSTRACT

BACKGROUND: There are limited data on the clinical effects of prone positioning according to lung morphology. We aimed to determine whether the gas exchange response to prone positioning differs according to lung morphology. METHODS: This retrospective study included adult patients with moderate-to-severe acute respiratory distress syndrome (ARDS). The lung morphology of ARDS was assessed by chest computed tomography scan and classified as "diffuse" or "focal." The primary outcome was change in partial pressure of arterial oxygen to fraction of inspired oxygen (PaO2/FiO2) ratio after the first prone positioning session: first, using the entire cohort, and second, using subgroups of patients with diffuse ARDS matched 2 to 1 with patients with focal ARDS at baseline. RESULTS: Ninety-five patients were included (focal ARDS group, 23; diffuse ARDS group, 72). Before prone positioning, the focal ARDS group showed worse oxygenation than the diffuse ARDS group (median PaO2/FiO2 ratio, 79.9 mm Hg [interquartile range (IQR)], 67.7-112.6 vs. 104.0 mm Hg [IQR, 77.6-135.7]; P=0.042). During prone positioning, the focal ARDS group showed a greater improvement in the PaO2/FiO2 ratio than the diffuse ARDS group (median, 55.8 mm Hg [IQR, 11.1-109.2] vs. 42.8 mm Hg [IQR, 11.6-83.2]); however, the difference was not significant (P=0.705). Among the PaO2/FiO2-matched cohort, there was no significant difference in change in PaO2/FiO2 ratio after prone positioning between the groups (P=0.904). CONCLUSIONS: In patients with moderate-to-severe ARDS, changes in PaO2/FiO2 ratio after prone positioning did not differ according to lung morphology. Therefore, prone positioning can be considered as soon as indicated, regardless of ARDS lung morphology.

7.
ACS Appl Mater Interfaces ; 14(28): 32522-32532, 2022 Jul 20.
Article in English | MEDLINE | ID: covidwho-1921550

ABSTRACT

With the growing interest in chemical and biological warfare agents (CWAs/BWAs), the focus has shifted toward aerosol protection using protective clothing. However, compared to air-permeable membranes, those with water vapor permeability have been investigated more extensively. Filtering membranes without air permeability have limited practical usage in personal protective suits and masks. In this study, polyacrylonitrile membranes with tightly attached activated carbon and doped copper(II) oxide were prepared via electrospinning. The nanofibers with uniformly controlled diameters and smooth morphologies enable water/air breathability and protection against aerosol (100 nm polystyrene nanobeads similar to SARS-CoV-2) penetration. The uniformly distributed and tightly attached activated carbon and doped copper(II) oxide particles enhance the sorptive performance of the membranes by blocking gaseous CWAs, including soman, nerve chemical agents, and BWAs. Such dual-purpose membranes can be implemented in protective equipment owing to their high performance and easy processing.


Subject(s)
COVID-19 , Charcoal , Aerosols , COVID-19/prevention & control , Copper , Humans , Permeability , SARS-CoV-2
8.
Depress Anxiety ; 39(7): 556-563, 2022 07.
Article in English | MEDLINE | ID: covidwho-1763221

ABSTRACT

BACKGROUND: The 2019 coronavirus disease (COVID-19) pandemic has had a profound impact on the mental health of people worldwide. This study examined dysfunctional coronavirus anxiety in nonpsychotic psychiatric outpatients during the pandemic using the coronavirus anxiety scale (CAS) and examined the relationship between coronavirus anxiety and clinical symptoms using network analysis. METHODS: In this cross-sectional study, 192 patients who first visited the psychiatric outpatient clinic of Severance Hospital during the COVID-19 pandemic with chief complaints of depressed mood, anxiety, somatic symptoms, or insomnia were included. We compared the clinical characteristics of patients with and without dysfunctional coronavirus anxiety. Network analysis was conducted to estimate the network of coronavirus anxiety and depressive, anxious, and hypochondriacal psychopathology. RESULTS: The results showed that 7.8% of patients exhibited dysfunctional coronavirus anxiety (CAS ≥ 5). Patients with dysfunctional coronavirus anxiety showed higher levels of health worry, somatic preoccupation, and subjective anxiety compared to patients without dysfunctional coronavirus anxiety. In the network analysis, the health worry node (Item 6 of the WI) showed the greatest number of connections with coronavirus anxiety nodes. CONCLUSIONS: These findings suggest that health worry may be an important bridge symptom that connects coronavirus anxiety and other clinical psychopathology. Patients with elevated health worries should be carefully monitored during the COVID-19 pandemic for exacerbation of previous symptoms and COVID-19-related psychopathology. Understanding the psychological factors in the face of the pandemic and their relationships with clinical psychiatric symptoms would help people prevent and overcome mental health problems during the pandemic.


Subject(s)
COVID-19 , Pandemics , Anxiety , Cross-Sectional Studies , Depression/psychology , Humans , Outpatients , SARS-CoV-2
9.
Microbiol Spectr ; 10(1): e0161421, 2022 02 23.
Article in English | MEDLINE | ID: covidwho-1691406

ABSTRACT

The antigen-based rapid diagnostic test (Ag-RDT) using saliva specimens is fast, noninvasive, and suitable for SARS-CoV-2 self-testing, unlike nasopharyngeal swab (NPS) testing. We evaluated a novel Beanguard gargle (BG)-based virus collection method that can be applied to Ag-RDT as an alternative to the current RT-PCR with an NPS for early diagnosis of COVID-19. This clinical trial comprised 102 COVID-19-positive patients hospitalized after a governmental screening process and 100 healthy individuals. Paired NPS and BG-based saliva specimens from COVID-19 patients and healthy individuals were analyzed using NPS-RT-PCR, BG-RT-PCR, and BG-Ag-RDTs, whose diagnostic performance for detecting SARS-CoV-2 was compared. BG-Ag-RDTs showed high sensitivity (97.8%) and specificity (100%) in 45 patients within 6 days of illness and detected all cases of SARS-CoV-2 Alpha and Delta variants. In 11 asymptomatic active COVID-19 cases, both BG-Ag-RDTs and BG-RT-PCR showed sensitivities and specificities of 100%. Sensitivities of BG-Ag-RDT and BG-RT-PCR toward salivary viral detection were highly concordant, with no discrimination between symptomatic (97.0%), asymptomatic (100%), or SARS-CoV-2 variant (100%) cases. The intermolecular interactions between SARS-CoV-2 spike proteins and truncated canavalin, an active ingredient from the bean extract (BE), were observed in terms of physicochemical properties. The detachment of the SARS-CoV-2 receptor-binding domain from hACE2 increased as the BE concentration increased, allowing the release of the virus from hACE2 for early diagnosis. Using BG-based saliva specimens remarkably enhances the Ag-RDT diagnostic performance as an alternative to NPS and enables noninvasive, rapid, and accurate COVID-19 self-testing and mass screening, supporting efficient COVID-19 management. IMPORTANCE An Ag-RDT is less likely to be accepted as an initial test method for early diagnosis owing to its low sensitivity. However, our self-collection method, Ag-RDT using BG-based saliva specimens, showed significantly enhanced detection sensitivity and specificity toward SARS-CoV-2 including the Alpha and Delta variants in all patients tested within 6 days of illness. The method represents an attractive alternative to nasopharyngeal swabs for the early diagnosis of symptomatic and asymptomatic COVID-19 cases. The evidence suggests that the method could have a potential for mass screening and monitoring of COVID-19 cases.


Subject(s)
COVID-19 Serological Testing/methods , COVID-19/diagnosis , SARS-CoV-2/isolation & purification , Saliva/virology , Adult , Aged , Aged, 80 and over , COVID-19/virology , COVID-19 Nucleic Acid Testing , COVID-19 Serological Testing/instrumentation , Female , Humans , Male , Middle Aged , Nasopharynx/virology , Republic of Korea , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Sensitivity and Specificity , Young Adult
10.
Microbiol Spectr ; 9(3): e0067221, 2021 12 22.
Article in English | MEDLINE | ID: covidwho-1532977

ABSTRACT

Here, we aimed to investigate the diagnostic value of a serological assay using the nucleocapsid protein developed for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection and evaluated its performance using three commercial enzyme-linked immunosorbent assays (ELISAs), namely, Standard E 2019 novel coronavirus disease (COVID-19) total antibody (Ab) ELISA (SD Biosensor), and EDI novel coronavirus COVID-19 IgG and IgM ELISA. A recombinant nucleocapsid protein (rNP) was expressed from plants and Escherichia coli for the detection of serum total Ab. We prospectively collected 141 serum samples from 32 patients with reverse transcription-PCR (RT-PCR)-confirmed COVID-19 and determined the sensitivity and dynamics of their total Ab response. Specificity was evaluated using 158 prepandemic samples. To validate the assays, we evaluated the performance using two different cutoff values. The sensitivity and specificity for each assay were as follows: 92.91% and 94.30% (plant-rNP), 83.69% and 98.73% (SD Biosensor), 75.89% and 98.10% (E. coli-rNP), 76.47% and 100% (EDI-IgG), and 80.39% and 80% (EDI-IgM). The plant-based rNP showed the highest sensitivity and area under the receiver operating characteristic (ROC) curve (0.980) among all the assays (P < 0.05). The seroconversion rate for total Ab increased sequentially with disease progression, with a sensitivity of 100% after 10 to 12 days of post-symptom onset (PSO) for both rNP-plant-based and SD Biosensor ELISAs. After 2 weeks of PSO, the seroconversion rates were >80% and 100% for EDI-IgM and EDI-IgG ELISA, respectively. Seroconversion occurred earlier with rNP plant-based ELISA (5 days PSO) compared with E. coli-based (7 days PSO) and SD Biosensor (8 days PSO) ELISA. We determined that rNP produced in plants enables the robust detection of SARS-CoV-2 total Abs. The assay can be used for serosurvey and complementary diagnosis of COVID-19. IMPORTANCE At present, the principal diagnostic methods for COVID-19 comprise the identification of viral nucleic acid by genetic approaches, including PCR-based techniques or next-generation sequencing. However, there is an urgent need for validated serological assays which are crucial for the understanding of immune responses against SARS-CoV-2. In this study, a highly sensitive and specific serological antibody assay was developed for the detection of SARS-CoV-2 with an overall accuracy of 93.56% using a recombinant nucleoprotein expressed from plants.


Subject(s)
Antibodies, Viral/blood , COVID-19 Testing/methods , COVID-19/diagnosis , Enzyme-Linked Immunosorbent Assay/methods , Nucleocapsid Proteins/immunology , Plant Proteins/immunology , Escherichia coli/genetics , Humans , Immunoglobulin G , Immunoglobulin M , Nucleocapsid , Plant Proteins/genetics , Recombinant Proteins/genetics , Recombinant Proteins/immunology , SARS-CoV-2/isolation & purification , Sensitivity and Specificity , Seroconversion , Tobacco/genetics
11.
Chem Eng J ; 426: 130763, 2021 Dec 15.
Article in English | MEDLINE | ID: covidwho-1385206

ABSTRACT

Infectious pollutants bioaerosols can threaten human public health. In particular, the indoor environment provides a unique exposure situation to induce infection through airborne transmission like SARS-CoV-2. To prevent the infection from spreading, personal protective equipment or indoor air purification is necessary. However, it has been discovered that the conventional filter can become contaminated by pathogen-containing aerosols, meaning that advanced filtering and self-sterilization systems are required. Here, we fabricate a multilayered nanocoating around the fabric using laponite (LAP) with Cu2+ ions (LAP-Cu2+ nanocoating) two contradictory functions in one system: trapping proteinaceous pathogens and antibacterial effect. Due to the strong LAP-protein interaction, albumin and spike protein (S-protein) are trapped into the fabric when proteins are sprayed using a nebulizer. The protein-blocking performance of the nanocoated fabric is 9.55-fold higher than bare fabric. These trapping capacities are retained after rinsing and repeated adsorption cycles, showing reproducibility for air filtration. Even though the protein-binding occurred, the LAP-Cu2+ fabric indicates antibacterial effect. LAP-Cu2+ fabric has an equivalent air and water transmittance rate to that of bare fabric with a stability under physiological environment. Therefore, given its excellent "Spear-and-shield" functions, the proposed LAP-Cu2+ fabric shows great potential for use in filter and masks during the viral pandemic.

12.
Respir Res ; 22(1): 220, 2021 Aug 06.
Article in English | MEDLINE | ID: covidwho-1344108

ABSTRACT

BACKGROUND: Prone positioning is recommended for patients with moderate-to-severe acute respiratory distress syndrome (ARDS) receiving mechanical ventilation. While the debate continues as to whether COVID-19 ARDS is clinically different from non-COVID ARDS, there is little data on whether the physiological effects of prone positioning differ between the two conditions. We aimed to compare the physiological effect of prone positioning between patients with COVID-19 ARDS and those with non-COVID ARDS. METHODS: We retrospectively compared 23 patients with COVID-19 ARDS and 145 patients with non-COVID ARDS treated using prone positioning while on mechanical ventilation. Changes in PaO2/FiO2 ratio and static respiratory system compliance (Crs) after the first session of prone positioning were compared between the two groups: first, using all patients with non-COVID ARDS, and second, using subgroups of patients with non-COVID ARDS matched 1:1 with patients with COVID-19 ARDS for baseline PaO2/FiO2 ratio and static Crs. We also evaluated whether the response to the first prone positioning session was associated with the clinical outcome. RESULTS: When compared with the entire group of patients with non-COVID ARDS, patients with COVID-19 ARDS showed more pronounced improvement in PaO2/FiO2 ratio [adjusted difference 39.3 (95% CI 5.2-73.5) mmHg] and static Crs [adjusted difference 3.4 (95% CI 1.1-5.6) mL/cmH2O]. However, these between-group differences were not significant when the matched samples (either PaO2/FiO2-matched or compliance-matched) were analyzed. Patients who successfully discontinued mechanical ventilation showed more remarkable improvement in PaO2/FiO2 ratio [median 112 (IQR 85-144) vs. 35 (IQR 6-52) mmHg, P = 0.003] and static compliance [median 5.7 (IQR 3.3-7.7) vs. - 1.0 (IQR - 3.7-3.0) mL/cmH2O, P = 0.006] after prone positioning compared with patients who did not. The association between oxygenation and Crs responses to prone positioning and clinical outcome was also evident in the adjusted competing risk regression. CONCLUSIONS: In patients with COVID-19 ARDS, prone positioning was as effective in improving respiratory physiology as in patients with non-COVID ARDS. Thus, it should be actively considered as a therapeutic option. The physiological response to the first session of prone positioning was predictive of the clinical outcome of patients with COVID-19 ARDS.


Subject(s)
COVID-19/physiopathology , COVID-19/therapy , Prone Position/physiology , Respiration, Artificial/methods , Respiratory Distress Syndrome/physiopathology , Respiratory Distress Syndrome/therapy , Aged , COVID-19/diagnosis , Cohort Studies , Female , Humans , Male , Middle Aged , Respiration, Artificial/trends , Respiratory Distress Syndrome/diagnosis , Retrospective Studies
13.
Int J Rheum Dis ; 24(6): 733-745, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1214741

ABSTRACT

AIM: To update previous guidance of the Asia Pacific League of Associations for Rheumatology (APLAR) on the management of patients with rheumatic and musculoskeletal diseases (RMD) during the coronavirus disease 2019 (COVID-19) pandemic. METHODS: Research questions were formulated focusing on diagnosis and treatment of adult patients with RMD within the context of the pandemic, including the management of RMD in patients who developed COVID-19. MEDLINE was searched for eligible studies to address the questions, and the APLAR COVID-19 task force convened 2 meetings through video conferencing to discuss its findings and integrate best available evidence with expert opinion. Consensus statements were finalized using the modified Delphi process. RESULTS: Agreement was obtained around key aspects of screening for or diagnosis of COVID-19; management of patients with RMD without confirmed COVID-19; and management of patients with RMD with confirmed COVID-19. The task force achieved consensus on 25 statements covering the potential risk of acquiring COVID-19 in RMD patients, advice on RMD medication adjustment and continuation, the roles of telemedicine and vaccination, and the impact of the pandemic on quality of life and on treatment adherence. CONCLUSIONS: Available evidence primarily from descriptive research supported new recommendations for aspects of RMD care not covered in the previous document, particularly with regard to risk factors for complicated COVID-19 in RMD patients, modifications to RMD treatment regimens in the context of the pandemic, and COVID-19 vaccination in patients with RMD.


Subject(s)
Antirheumatic Agents/therapeutic use , COVID-19/epidemiology , Consensus , Immunosuppressive Agents/therapeutic use , Pandemics , Rheumatic Diseases/drug therapy , Comorbidity , Humans , Rheumatic Diseases/epidemiology , Rheumatology , SARS-CoV-2
14.
Advanced Functional Materials ; : 1, 2021.
Article in English | Academic Search Complete | ID: covidwho-1173765

ABSTRACT

Transmission of pathogens via respiratory droplets can spread infections such as COVID‐19. Wearing a mask hinders the spread of COVID‐19 infection and has become mandatory in some cases. Although most masks are affordable and disposable, continual daily replacement is required due to their performance deterioration caused by washing and contamination. Hence, a urethane‐reactive coating material comprising perfluoro‐tert‐butanol‐hexamethylene diisocyanate is developed with highly hydrophobic and oleophobic properties to functionalize a polyurethane‐coated fabric to bestow high breathability, durability, reusability, and protection ability. Its functions are maintained after scratch and wash testing, and its air permeability and water vapor transmittance rate (necessary for respiration) are unaffected. Its filtration efficiency of water droplets containing 100 nm polystyrene particles (similar in size to SARS‐CoV‐2) is increased due to its highly hydrophobic properties. In addition, it inhibits the adsorption of bovine serum albumin, the spike protein of COVID‐19, and Staphylococcus aureus and Pseudomonas aeruginosa. [ABSTRACT FROM AUTHOR] Copyright of Advanced Functional Materials is the property of John Wiley & Sons, Inc. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

SELECTION OF CITATIONS
SEARCH DETAIL